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Lei Zhang, Member, IEEE, Qian-Kun Xu, and Hua Huang, Member, IEEE

Abstract—This paper presents a novel formulation of video
stabilization, by directly solving for optimal image warps toward
stabilized sequence. With the estimated shaky motion via long
or short feature trajectories, our approach encodes another
two steps, motion compensation and image warping, into a
single global optimization process, rather than operating as two
individual steps. This process is done with only positions of
embedded mesh vertices as common variables. Spatial and tem-
poral coherence is therein re-formulated with similarity invariant
representation of motion trajectories and intra-(and inter-)frame
consistency of similar transformations with respect to mesh
vertices. Such a one-shot formulation converts video stabilization
into a quadratic energy minimization problem defined for image
warps, thus can be efficiently resolved by using robust solver
for sparse linear system. Experimental results demonstrate the
flexibility and efficiency of our approach to produce visually
plausible stabilization effects on a variety of videos.

Index Terms—Video stabilization, global optimization, image
warping.

I. INTRODUCTION

THE popularization of digital devices with video cam-
eras makes it possible to obtain videos whenever and

wherever, thus achieving rapid and sustained rise of video
quantity. However, visual quality of captured videos is varied
and highly affected by uncertainties related to environmental
setting, photographic skills, etc. Typically, it is hard for an
amateur user to steadily hold a camera in the whole capture
process, thus generating noticeable shaking effect in the output
video sequence. So video stabilization becomes an important
and exigent problem in video processing [1], [2], [3], [4],
which strives for eliminating or reducing the visual shake for
a smooth display. Some hardware-based solutions have been
applied to tackle the annoying shake, like tripods, dollies,
steady-cams, which are usually of heavy-load and inflexible
in use for casual capture. While camera’s in-built optical or
electronic stabilizers only resist high-frequency jitter, they
might get stuck in the occurrence of low-frequency disturbance
like video shot by a walking person. On the contrary, recent
contender methods treat video stabilization as a task of image
post-processing, which is free of any hardware and able to
deal with a wide range of types of shaky motion. Such
methods do not necessarily pursue physically accurate motion
plan, but seek to transform the original video frames for
steady appearance as a whole sequence. In this paper, we will
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revisit image post-processing stabilization and present a novel
approach for fast video stabilization.

Image post-processing stabilization usually follows a com-
mon three-step scheme: shaky motion estimation, smooth
motion compensation and image warping. Shaky motion es-
timation is critical to infer the original motion trend, usually
described by feature trajectories [5], [6], [7], optical flows [1],
[8], [3], or parametric transformations [9], [10], [11]. Then,
most of existing methods [6], [7], [12], [13], [14], [15] take
the rest into two individual procedures, i.e., solving smooth
motion and seeking suitable image warping afterward to make
regenerated frames accommodating the smoothed motion, and
build the self-governed formalism for respective optimal solu-
tions. Such two-shot treatment has justifiable rationales, but
also brings about flaws in two aspects: i) The amount of
compensation to the smoothed motion might cause irreversible
artifacts in image warping, because the latter has to obey
the compensated motion for the purpose of stability. By
irreversible we here mean warping effect can only be presented
in hindsight by adjusting motion compensation ahead; ii) It
usually casts stabilization as at least two separate optimization
problems, which has to assume considerable computation
burden to obtain the final stabilization results.

However, we argue that motion compensation and image
warping are tightly coupled by a potential stabilization scheme,
whereupon the two steps can be mixed as a single process
toward optimally smoothed and warped appearance of video
frames simultaneously. In this paper, we present a global
approach for combining the two steps of motion compensa-
tion and image warping into a single one-shot optimization
process. Actually, our technique is partially inspired by the
recent works of [7] that uses rigid enforcement for consistent
motion compensation and [11] that totally employs spatially
variant homographies for the two steps, but we instead opt
for similarity invariant constraints and spatially variant similar
warps, both encoded by vertices of grid mesh embedded in
video frames (see Fig. 1), which can achieve more flexible
and efficient stabilization performance.

Our contribution to the state-of-the-art is a novel formula-
tion on video stabilization, which is globally posed as the min-
imization on a quadratic functional. The sole task is to solve
the optimal image warps parameterized by positions of grid
mesh vertices, to be more direct and hence more economic.
Experimental results show the flexibility and efficiency of our
one-shot formulation in dealing with stabilization on a variety
of videos.

II. RELATED WORK

Recent years have witnessed a marked progress on image
post-processing based video stabilization, and different lines of
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Fig. 1. Video stabilization of shaky motion (left) by using a global formulation to optimize image warps (middle) for steady motion (right), realized in a
spatially and temporally coherent manner with positions of grid mesh vertices as common and sole variables in the formulation.

research come up by following the aforementioned three steps.
For shaky motion estimation, an ideal solution is to recover
the real three-dimensional (3D) camera path, which typically
assumes the structure-from-motion (SfM) technique [13], [15],
[16] or equips some depth sensors [17] for 3D reconstruction.
It is known that SfM still remains costly and brittle for many
challenging videos, and depth sensor like Kinect does not suit
outdoor scenes. Hence, a large body of research leverages
two-dimensional (2D) feature tracking to form continuous
trajectories [5], [6], [14], [18] or dense optical flow [1], [8],
[3], which indeed explicitly represent the shaky motion in the
videos. Obviously, these methods often depend on truly ob-
taining long trajectories or reliable optical flow from sequential
changes of video frames, and probably suffer technical failures
with interruption caused by occlusion or textureless regions.
Alternatively, a few methods build the shaky motion by glob-
al [9], [10], [19] or local [11], [20] parametric transformations
between adjacent frames, while video stabilization amounts to
optimizing the intrinsic parameters for smoothed transforma-
tions. Such methods do not confine themselves within any
trajectory space and are flexible for dealing with a wide range
of videos. But on the other hand, they usually incur noticeable
distortion due to using accumulated transformations rather
than continuous trajectories. In this paper, our approach will
borrow the flexibility of local transformations but still consult
reliable trajectories for more efficient video stabilization.

With the estimated shaky motion, smooth motion compen-
sation is applied to filter the estimated motion, based on
trajectories, optical flows or parametric transformations for
dampening high/low-frequency jitter. It has been pointed out
that such filtering favors the fashion that enables preservation
on the geometric relationships among individual trajectories or
transformations [6]. If camera path is firstly extrapolated by
using SfM, then relationships of trajectories are engaged by the
camera path as well as projection matrices. Thus, the task is
changed to smooth the camera path or parameters of projection
matrix of camera imaging [13], [15]. Otherwise when directly
using trajectories, Liu et al. [6] employ low-rank constraints
on the matrix formed by trajectories, and perform low-pass
filtering on the subspace basis. This method is able to provide
aggressive stabilization effects, but heavily relies on long
trajectories covering the filter windows. To relax the unfavor-
able conditions, virtual trajectories can be added to complete

short ones like using principles of epipolar geometry [14], or
particle filtering is adopted to encourage competent motion
for stabilization [18]. Besides, Wang et al. [7] employ Bézier
curves to fit the trajectories, and preserve their offsets by
enforcing spatial rigidity in the filtering. This method can deal
with videos having both long and short trajectories, and also
achieves fast computation, but possibly incurs much deviation
from intended motion due to over-smoothness by using Bézier
curves as the shake-free guidance. Besides, this method cannot
well stabilize videos with zooming or fast rotation motion due
to the use of rigid enforcement. Actually, smoothing inter-
frame global parametric transformations, e.g., homography [9]
or affine transformation [10], [19], can give a simple yet
robust means to control the individual trajectory deviation for
motion filtering. But there usually exists geometric distortion
if inter-frame transition can not be modeled by a single global
transformation, especially for videos with large parallax or
non-in-plane motion. So Wang et al. [20] exploit the plane
structure directly from videos, and perform motion compen-
sation using respective homography corresponding to each
plane. Obviously, this method needs correct plane detection,
otherwise resulting in poor stabilization effects. Liu et al. [11]
employ spatially variant homographies to locally approximate
the underlying transformation, which avoids plane structure
detection and is able to compensate a variety of shaky motion.
But this method totally throws potential good trajectories away,
and turns to iterative adjustment on homography weights to
regulate the deviation from the intended motion trend, which
is slow in computation. In this paper, we will utilize the
trajectories to assist motion approximation by local similar
transformations.

To obtain the stabilized video, frames are transformed by
image warping to follow the compensated smooth motion.
To preserve the original appearance, ‘as-similar-as-possible’
method as in [13] is widely used to keep the warping distortion
with deviation of uniform scale. This method is technical-
ly simple to implement, but does not obey cinematograhic
principles in reality, and usually performs poorly in large
textureless regions. So Zhou et al. [15] resort to plane-based
homographies based on 3D plane detection as a supplement
for warping textureless regions. Considering frangibility of
plane structure detection, Liu et al. [11] resort to multiple
local homographies for image warping, which can generate
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visually pleasing stabilization effects for many challenging
videos. In this paper, our approach will follow the ‘as-similar-
as-possible’ principle, but enforce more constraints for spatial
continuity, and take up motion compensation as a part of
realizing optimal image warps for the desirable stabilization
effects.

III. APPROACH

The key idea behind our approach is to directly find a set
of optimal image warps, with appropriate parametrizations,
which admit visually shake-free appearance for the whole
video sequence. Thus, the two steps of motion compensation
and image warping are to be combined and formulated into
a single global optimization process through just solving the
optimal image warps. Next, we will elaborate the details of our
global video stabilization formulation based on the estimated
shaky motion.

A. Shaky motion estimation

Firstly, we extrapolate the shaky motion by tracing feature
trajectories passing through the video sequence (see Fig. 1
left). Here, we use pyramidal Lucas-Kanade [21] to perform
good feature tracking and collect the resultant trajectories in
the video, denoted by P = {Ph}Mh=1. Each trajectory Ph is
composed of a set of nodes as the intersection between the tra-
jectory and the corresponding frame, i.e., Ph = {P a

h , ..., P
b
h},

where a and b are the indices of the start and end frames.
Although feature tracking is not always reliable in practice,
the obtained trajectories are still believed to be competent for
representing the underlying shaky motion. Similar to existing
method [6], [7], [10], [11] et al., the tracked features on mov-
ing objects are discarded using the technique like RANSAC,
to make our global approach more robust.

Unlike totally abandoning the trajectories in motion com-
pensation and modeling motion using transformation matrices
like [10], [11], we adopt and charge feature trajectories for the
global formulation on both motion compensation and image
warping in the sequel.

B. Global formulation

Our global approach is at its core a set of image warps
for the corresponding frames, to achieve both shake-free and
distortion-less appearance in the stabilized sequence. Formally,
given a video sequence with N frames as I = {It}Nt=1, we
want to find an image warp ft for each frame It, such that the
regenerated sequence {ft(It)}Nt=1 can present steady motion
trend yet still adhere to its original appearance. Hence, we
resort to a formulation on video stabilization as follows:

F(ft) = Fm(ft) + Fs(ft) (1)

where Fm(·) serves the steady motion of trajectories, and
Fs(·) controls visual distortion in image warping for the
stabilized appearance.

With Eqn.(1), it comes with the first key ingredient for our
global setup by using ft as the common proxy in the two
parts. Previous methods like [6], [7], [14], perform motion

smoothing and image warping as two separate parts, thus
having two optimization steps, of which the output of smooth
trajectories becomes the input of the image warping. Some
other methods like [9], [10], [12], directly solve for optimal
warps like ours. But they appoint the proxy ft as a single
homography or affine transformation without the part of Fs

for refraining distortion, which cannot model parallax well and
always results in some notable visual artifacts in the stabilized
sequence. As the second key ingredient of our global setup,
we adopt vertices positions of grid mesh embedded in each
frame to parameterize ft, which is able to encode both the
smooth motion and image warp simultaneously.

Concretely, a grid mesh is composed of sampled 2D ver-
tices V = {Vi,j} and edges E = {Vi,j , Vi+σ,j+δ}, where
σ, δ ∈ {−1, 0, 1} indicate the neighborhood relationships
such that Qi,j = {Vi,j , Vi+1,j , Vi+1,j+1, Vi,j+1} forms a quad
(see Fig. 2 left). For each frame, we arrange a regular grid
mesh M = {V, E}, thus constructing a discrete domain for
image warping. Then, image warp of each frame is determined
by the positions of mesh vertices, and the interior of each
quad is obtained by interpolation. For a given frame It,
we have the mesh vertices as {Xt

i,j = (xt
i,j , y

t
i,j) ∈ R2},

and the warped vertices after stabilization are denoted by
{V t

i,j = (ut
i,j , v

t
i,j) ∈ R2}, where t indicates the frame index.

Then, the two parts of Eqn.(1), Fm(·) and Fs(·), will be
completely represented by the position of mesh vertices as
follows:

Fm(ft) = Fm(V t
i,j) = λ1Ets(V

t
i,j) + λ2Esc(V

t
i,j)

Fs(ft) = Fs(V
t
i,j) = λ3Esp(V

t
i,j) + λ4Ewf (V

t
i,j)

(2)

where the temporal smoothness term Ets(·) and spatial consis-
tency term Esc(·) ensure a temporally and spatially consistent
motion compensation during trajectories smoothing, and the
shape-preserving term of Esp(·) and warping fidelity term
Ewf (·) impose less distortion in image warping. The coef-
ficients λ1,2,3,4 are the constant weights for these terms. Note
the sole variables in these terms are positions of mesh vertices,
so we can present a global formulation for video stabilization.
Next, we will elaborate the details to define these terms in the
formulation.
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Fig. 2. Left: Grid mesh embedded in each frame. Right: Trajectory node can
be represented by the four vertices of the quad with bilinear interpolation.

Temporal smoothness. The aim of stabilization is to
provide the smooth display of video sequence, so both high-
and low- frequency vibration should be suppressed in order to
produce shake-free appearance. Inspired by the works of [10],
[11], we resort to modulation of the trajectories with respective
to some specified smoothness. But instead of applying full-
frame affine transformations [10] or local homographies [11]
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to accommodate the smoothness, we directly operate on the
trajectories for steady motion. To achieve video stabilization,
we can minimize the acceleration of trajectories using the
following temporal smoothness term

Ets =
∑
h

∑
t

‖P ′t
h −

∑
s∈Ωt

wshP
′s
h ‖2 (3)

where P ′t
h denotes the node positions of smoothed trajectory

in the t-th frame, P ′s
h means the node belonging to the

neighborhood Ωt of the t-th frame, and wsh is a weight of
P ′s
h . Similar to [11], we use the idea of bilateral filter with

combination of two Gaussian functions into the definition of
the weight wsh as follows:

wsh = Gt(‖t− s‖)Gd(‖P ′t
h − P ′s

h ‖) (4)

We set the radius of the Gaussian function Gt(·) equal to
6 frames, which is large enough to achieve smooth camera
motion, and set the standard deviation of the Gaussian function
Gd(·) as 10 pixels, based on an average distance between two
nearby feature points gained from many experiments. Besides,
using bilateral filter for temporal smoothness can also avoid a
large cropping ratio when the camera motion is quite fast.

As our global formulation commits itself to variables only
using the positions of mesh vertices, P ′t

h needs to be encoded
with V t

i,j in a unified form. Here, we employ the bilinear
coordinates to represent the trajectory nodes as used in [6],
[11], [13], which is proven to be similarity invariant. Sup-
posing a trajectory node P t

h that falls in a quad with four
vertices as Xt

h = [Xt
i,j , X

t
i+1,j , X

t
i+1,j+1, X

t
i,j+1], then it can

be represented by their linear combination as P t
h = Xt

h · Ct
h,

where Ct
h = [cti,j , c

t
i+1,j , c

t
i+1,j+1, c

t
i,j+1]

T are the bilinear
coordinates with respect to the four vertices. These bilinear
coordinates are used as interpolation weights of the trajectory
node, thus representing the trajectory based on the vertices. To
keep the consistency of trajectory in the smoothing and warp-
ing, we expect the warped node to have the same configuration,
i.e., P ′t

h has the same weights with respect to the stabilized
positions of vertices V t

h = [V t
i,j , V

t
i+1,j , V

t
i+1,j+1, V

t
i,j+1] (see

Fig. 2 right). Then, we have P ′t
h = V t

h ·Ct
h. Consequently, the

temporal smoothness term can be written as

Ets(V
t
i,j) =

∑
h

∑
t

‖V t
h · Ct

h −
∑
s∈Ωt

wshV
s
h · Cs

h‖2 (5)

Actually, encoding with mesh vertices also has the effect that
imposes the consistency of trajectories within the same quad
in the smoothing.

Spatial consistency. As pointed by Liu et al. [6] that
individual smoothing of every trajectory leads to broken geo-
metric relationships among different video regions, trajectories
need to be smoothed in a consistent manner across the whole
frame. In our setup, the smoothed trajectories are determined
by the mesh vertices, i.e., image warp function ft of each
frame. For the trajectories in a quad, the consistency has been
guaranteed by the similarity invariant bilinear interpolation
scheme as used in temporal smoothness term. For trajectories
among different quads, they also need to go through coherent
modification for the smooth motion trend, i.e., requiring the
image warp to be continuous over the entire frame. To realize

continuous warping among adjacent quads, we allow high-
order continuity constraints on the warps ft(·), requiring its
derivatives ∂kft/∂

kV to be smooth as well. For simplicity,
we adopt the derivative continuity up to the second order, and
compute them based on finite differences on the grid mesh
domain. Then, we have the following spatial consistency term:

Esc(V
t
i,j) =

∑
t

∑
i,j

‖V t
i,j+1 − 2V t

i,j + V t
i,j−1‖2

+
∑
t

∑
i,j

‖V t
i+1,j − 2V t

i,j + V t
i−1,j‖2

+
∑
t

∑
i,j

‖V t
i+1,j+1 − V t

i+1,j − V t
i,j+1 + V t

i,j‖2

(6)

This equation is also used to solve the problem of perspective
image warping [22], which enables the warps continuous
across the image. Unlike the method of [7] using strict rigid
transformation to enforce the spatial consistency, our method
broadens the constraint to allow variance in the sense of similar
transformation as defined in the following shape preservation
term, which is able to deal with videos with a wide range of
motions.

Actually, the continuity of image warps can enhance the
consistency of smoothing trajectories within different quads,
because the trend of smoothed trajectories is settled by the
transformation on each quad. As a result, it can achieve
uniform warping over the whole frame for less geometric
distortion. Besides, remembering bilinear coordinates have
similarity invariant property with high-order smoothness, so
the spatial consistency does not conflict the demanding on
temporal smoothness of trajectories in the same quads. Hence,
with the constraints defined by Eqn.(3) and (6), we are able
to obtain spatially and temporally consistent smoothing effect
on trajectories under the image warping.

Shape preservation. Because we use image warps to
drive motion smoothing for stabilization, visual changes of
video appearance are unavoidable in the warping process.
To keep the appearance close between the original and the
stabilized frames, we choose image warps that are able to
retain the local contents with similarity as most previous
methods do in [6], [13], [23]. We therefore constrain image
warps {ft} within the family of similar transformations, i.e.,
conformal mappings between the two 2D domains. Mathe-
matically, a warping function ft(·) is a conformal mapping
equivalently saying it satisfies Cauchy-Riemann equation [22],
whose Jacobian matrix has a skew symmetric form. So for
the warping function (ut, vt) = ft(x

t, yt), it has to admit two
equations: ∂ut/∂xt = ∂vt/∂yt and ∂ut/∂yt = −∂vt/∂xt.
With the regular mesh M as the domain, we employ finite
difference on the vertices, and obtain the discrete form of
Cauchy-Riemann equation as follows:

ut
i+1,j − ut

i,j = vti,j+1 − vti,j

ut
i,j+1 − ut

i,j = vti,j − vti+1,j

(7)

Then, shape preservation amounts to summing up the vi-
olation of conformity over all the quads of the frames, and
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(a) (b) (c) (d)

Fig. 3. Video stabilization results with the proposed energy terms. (a) Input two sampled frames (74th (top) and 242th (bottom)). (b) Results by solving the
global formulation with all the four terms. (c) Results without the spatial consistency term. (d) Results without the shape preservation term.

minimizing the following energy function

Esp(V
t
i,j) =

∑
t

∑
i,j

(‖(vti+1,j − vti,j) + (ut
i,j+1 − ut

i,j)‖)2

+
∑
t

∑
i,j

(‖(ut
i+1,j − ut

i,j)− (vti,j+1 − vti,j)‖)2

(8)
Intuitively, Eqn.(8) encourages a sort of uniform scales of a
quad in the warping, thus resisting shear and non-uniform
scale on the enclosed region for shape preservation. In fact,
our shape preservation term Esp(·) bears resemblant effect
to the ‘as-similar-as-possible’ transformation term as used
in [11], [13], merely differing in the form of discretization and
involving less quadratic items by using Eqn.(8), i.e., having
only about one-fourth of the number of items used in [13].

Warping fidelity. Image warping based on similarity
transformation can well keep the original appearance of video
sequence, but possibly causes global shrinkage due to the
homogeneity of Eqn.(8). Hence, we prefer the warped frame to
endure a moderate shape change as a whole, i.e., constraining
mesh vertices deviation. Besides, the change of trajectory
nodes can be characterized by the mesh vertices based on
their bilinear coordinates. Hence, it is necessary to keep the
warped positions of mesh vertices within a small variance with
respect to their original positions. Thus, we have the following
warping fidelity term to shape the overall deviation in the
warping:

Ewf (V
t
i ) =

∑
t

∑
i,j

‖V t
i,j −Xt

i,j‖2 (9)

This term imposes the warped frame to occupy as much visible
field as possible when applying appropriate trajectory smooth-
ing by Eqn.(4) and (5). Besides, it also takes on an analogous
role as in the method of [7] to deal with some challenging
videos that have the frames containing no trajectory nodes.

Finally, per the constraints defined as above, we obtain the
terms of Fm(·) and Fs(·) based on the positions of mesh
vertices, and have the global form of the energy function as
follows:

F(V t
i,j) = λ1 · Ets + λ2 · Esc + λ3 · Esp + λ4 · Ewf (10)

The weights λ1,2,3,4 dominate the efficacy of the proposed
four terms on the obtained image warps, thus influencing the
final stabilized appearance. We will discuss the weights setting
in the following section.

Solving the optimization problem of Eqn.(10) is easy,
because the function F(·) is a favorable quadratic energy
function with the positions of vertices as the variables, and
video stabilization is totally determined by solving their new
positions. With the constraints as above, Eqn.(10) has well-
posedness for a non-trivial solution. Finally, stabilization re-
sults are obtained by transformation and interpolation accord-
ing to the new mesh vertices resolved by optimizing Eqn.(10)
on the frames (see Fig. 3(b)).

Remark. The four terms of Eqn.(10) are all necessary for
the desirable stabilization results. The temporal smoothness
term Ets is the key aspect to determine the temporal behavior
of the smoothed sequence. Although the spatial consistency
term Esc and the shape preservation term Esp look alike by
using C2 and C1 continuity as constraints respectively, and C2

implying C1 continuity, they have different influences on the
stabilization. Due to the second order continuity, Esc drives
the frame warping to be more uniform over the whole frame,
otherwise without this term, the stabilized frame might have
biased warping artifacts in different regions (see Fig. 3(c)). Esp

is a common form respecting shape preservation, which serves
the minimization on the local geometric distortion in warping
frame. The absence of this term incurs severe deviation of the
stabilized video from its original appearance (see Fig. 3(d)).
Actually, the use of both Esc and Esp enables a trade-off
warping effect between the rigid transformation used in [7]
and similarity transformation used in [13], towards producing
better stabilization effects (see the example of Video#1 in
the accompanying video demo supplement.avi, which can be
viewed from our webpage1). The warping fidelity term Ewf

explicitly balances the visible field change caused by using the
smoothed trajectories based on Ets. And more importantly, it
makes Eqn.(10) having a non-trivial solution, because the other
three terms are all homogeneous with respect to the variables
and take all-zero as their optimal solutions.

1http://iitlab.bit.edu.cn/gvlab/download/stabilization/supplement.zip
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C. Optimization

The sole variables of Eqn.(10) are the 2D positions of mesh
vertices as {V t

i,j}, which favors a one-shot global optimization
on both motion compensation and image warping. As a
result, the stabilized frames can be directly rendered by using
the obtained vertices, rather than reassigning their positions
according to the computative transformations like [10], [11].
Seemingly, our formulation of Eqn.(10) contains slightly more
terms for desired stabilization, but it still presents a quadratic
form with respective the variables, thus avoiding any iterative
updating like [11]. To seek for the optimal solution, we
compute its gradient and establish the normal equation, which
is a linear system with dimensionality equal to the number of
variables as 2×W ×H ×N , where W ×H is the number of
mesh vertices in each frame and N is the number of frames.
Fortunately, the coefficient matrix of normal equation appears
to be sparse, due to only local neighborhood in space and
time is involved in the terms. Here, we use the sophisticated
sparse linear system solver like TAUCS [24], to perform fast
computation, by which we immediately obtain the transformed
positions of mesh vertices.

IV. IMPLEMENTATION

With trajectories representing shaky motion, the task of
video stabilization by our approach comes down to an instance
of an energy minimization problem, i.e., by solving Eqn.(10)
for the optimal positions. Although variables are therein just
the positions of mesh vertices and attached to a sparse linear
system, it is still tough to solve the minimization problem by
considering all video frames in such a global form, especially
for lengthy or high-resolution videos. So we split the input
video into a set of segments {Sk} with overlap between
adjacent segments. For all the examples in this paper, an input
video is firstly splitted into segments with 200 frames, and
assigned with 30 frames in the overlapping portion. And for
every frame, we partition it into regular mesh quads with
80 × 80 pixels in each one. Then, we perform stabilization
on the segments sequentially to further reduce the number of
variables in practice.

For the overlapping frames with the start frame Ia and end
frame Ib, e.g., {It}bt=a = Sk ∩ Sk+1, we adapt the warped
vertices {V t

i,j} obtained by optimization on Sk, and synthesize
transitive vertices positions by linear blending on {V t

i,j} and
{Xt

i,j}, i.e., (1−λ)V t
i,j+λXt

i,j , where λ = (t−a)/(b−a). We
use the synthetic positions to initiate original mesh vertices for
stabilizing the next segment Sk+1, which can produce smooth
transition in the overlap. Consequently, we gain the overall
stabilization result for the whole video. Such streaming scheme
enables our approach to deal with stabilization on a variety of
long or large-size videos.

Weights setting. The energy function Eqn.(10) has four
weights λ1,2,3,4 that influence the stabilization results. In fact,
λ1,2 control the spatial and temporal smoothness of both
motion compensation and image warping. The setting of λ1

directly impacts the temporal smoothness of the stabilized
frames. A well-designed λ2 can distract warping distortion
uniformly across the frames. λ3 sets the tone of similarity

for image warps, thus concerning the geometric distortion
in the stabilized frames. λ4 relates to the spatial change of
the stabilized frame by the deviation of mesh vertices in
image warping, which partially affects the cropping areas
after stabilization. Consequently, we have to adopt different
strategies to set the four weights respectively for controlling
the energy terms in our implementation as follows.

We set λ1 = 12 as a constant to achieve a predominant s-
moothing effect for primarily serving our stabilization purpose.
While for λ2, we find a constant setting λ2 = 20 is sufficient
to work in the production of appealing results with an overall
absorption on the warping distortion across the frame. We set
λ3 according to the distribution of trajectory nodes in the quads
enclosed by the corresponding vertices, which is adaptively
defined as

λ3(Qi,j) =

{
5, : N (Qi,j) > 0
15, : N (Qi,j) = 0

(11)

where N (Qi,j) is the number of trajectory nodes in the quad
Qi,j . Thus, the quads having trajectory nodes are prone to
obey the trajectory smoothing trend, while the others devoid
of any node are assumed with similar transformation. Since
we want to keep as much visible field as possible after frame
cropping, we stress the fixation for the four corners of each
frame by the values of λ4 on these vertices, i.e.,

λ4(Vi,j) =

{
3, : Vi,j ∈ C
1, : otherwise (12)

where C = {V0,0, V0,H−1, VW−1,0, VW−1,H−1} are the four
corners of the frame. Such weights setting is able to process
various shaky videos, and we use the same weights defined as
above for all the examples in the following experiments.

V. EXPERIMENTS

We have implemented our algorithm and tested it on a
variety of videos. The dataset comprises 100 publicly available
video clips from previous works on video stabilization, which
touches on different types of motions by hand-held cameras
(see the examples in Fig. 4 and 7). We presented the stabi-
lization results by our approach and evaluation for its actual
performance. We also made extensive comparisons with some
state-of-the-art methods and systems for video stabilization.
For visual demonstration on the superiority of our approach,
we provide a dynamic comparison in the companion video
demo comparison.mp4, which can also be viewed from our
webpage2. Besides, user study was conducted to evaluate the
quality of stabilized videos. All the experiments ran on a single
PC machine with Intel Core i5-2400 3.1GHz CPU and 8G
RAM. Next, we will look in more details on our experiments.

A. Processing time

Provided with the feature trajectories, most efforts in our
approach are devoted to optimizing the energy function of
Eqn.(10). Hence, the primary time consuming is laid on
constructing and solving the sparse linear system. Generally

2http://iitlab.bit.edu.cn/gvlab/download/stabilization/comparison.zip
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Source video Our approach Subspace L1-optimization Spatial-temporal Bundled paths

(a)

(b)

(c)

(d)

(f)

(g)

Failure

Failure

Failure

(h)

Failure

(e)

Failure

Fig. 4. Comparisons of stabilization results by our approach, subspace [6], L1-optimization [10], spatial-temporal optimization [7] and bundled paths [11].

for 200 frames with 1280 × 720 resolution, feature tracking
for trajectories takes about 3.3 seconds, and then constructing
and solving the sparse linear system take about 4 seconds; we
finally obtain the stabilized frames after cropping outranged
regions and rendering them with texture mapping technique,
which consumes about 3.8 seconds for 200 frames. In summa-
ry, our approach can achieve a 18fps processing toward fast
video stabilization.

B. Comparison with state-of-the-art methods

We compared our stabilization results with some state-
of-the-art methods, including using subspace [6], L1-

optimization [10], spatial-temporal optimization [7] and bun-
dled paths [11]. Most results are directly obtained from the
authors’ publications or by using the binary code that they
provided. Fig. 5 demonstrates the average performance of
different stabilization methods. Since the implementation of
the steps of feature tracking and frame rendering might differ
from each other, we also list just the per frame average
running time for the optimization steps involved in different
methods (see Table I). Generally, our approach gains fast
stabilization computation that is comparable with the spatial-
temporal optimization method [7], but is significantly faster
than the other methods. Besides, our approach can deal with
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Fig. 5. Comparisons on the average time of the entire stabilization processing
(measured by FPS: frames per second) by using our approach, subspace [6],
L1-optimization [10], spatial-temporal optimization [7] and bundled path-
s [11].

shaky videos that cannot be processed by previous method
like [6], and well preserve the original appearance with less
visual distortion and frame cropping than previous methods
like [7], [10] (see Fig. 4 and the dynamic comparison in the
video demo comparison.mp4).

TABLE I
PER FRAME AVERAGE RUNNING TIME (IN SECONDS) FOR THE

OPTIMIZATION STEPS OF DIFFERENT METHODS.

Our approach Subspace L1-optimization Spatial-temporal Bundled paths
0.02 0.1 0.05 0.015 0.06

The subspace [6] method is based on smoothing long fea-
ture trajectories with low-rank constraints to perform motion
compensation, and the smoothed trajectories are necessary to
render stabilized video. So when there is no long trajectory, for
example, with occlusion, fast rotation or zooming motion, this
method fails in the motion smoothing step (see Fig. 4(a), (f)
and (h) and the corresponding videos in comparison.mp4). On
the contrary, the setup of our formulation can accommodate
both long and short trajectories, and the quadratic energy
function can always be optimized toward a non-trivial solution.
Hence, our approach are less sensitive to trajectory length
and can produce better stabilization results. Fig. 6 shows the
distribution of trajectories before and after stabilization by
applying our approach on the videos in Fig. 4(a), (f) and
(h), which involves motions with occlusion, fast rotation and
zooming respectively. For visual clarity, we just sample a
subset of trajectories as shown in the figure. Actually, even
for the video that has trajectory passing through only two
frames, e.g., the video in Fig. 4(a) (showing the corresponding
trajectories in Fig. 6(a)), our approach can work well without
any processing failure, just possibly incurs minor stability
artifacts. Hence, our approach is more robust to deal with
both long and short trajectories, like the spatial-temporal
optimization method [7].

The method based on L1-optimization [10] is usually robust
enough to process many shaky videos. But it uses only one
homography matrix that cannot well represent scenes with
large parallax correctly, and usually causes visible distortion
due to its 2D motion model (see Fig. 4(c-e) and the cor-
responding videos in comparison.mp4). Because our method
employs conformal mapping for shape preservation, it is more

(a)

(b)
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1 21 41 61 81 101 121 141 161 181
0

250

500

750

1000

1250

1500

1 21 41 61 81 101 121 141 161 181
0

120

240

360

480

600

720

1 21 41 61 81 101 121 141 161 18122 62 82 102 122 142 162 182

(d)

(c)

2 42 82 122 1622 42 82 122 162 2 42 82 122 162

Fig. 6. Trajectories of the videos with (a) occlusion (in Fig. 4(a)), (b) fast
rotation (in Fig. 4(f)) and (c) zooming (in Fig. 4(h)). Left: Trajectories before
stabilization. Right: Trajectories after stabilization by our approach. (d) shows
the statistics on the number of trajectories (vertical axis) of different lengths
(horizontal axis) within the range [2, 200] for the corresponding three videos.

flexible to handle parallax well by smoothing motion with
spatial-temporal coherence. Besides, our approach gains faster
performance due to optimizing a single quadratic energy
function in the sense of L2-optimization.

By employing Bézier curves to fit the trajectories, spatial-
temporal optimization method [7] can usually achieve prefer-
able stabilization results from shaky videos rapidly, which has
a commendably fast computation in the motion smoothing
step. But when camera motion is fast and shake is acute, such
as fast rotation and zooming, Bézier curves are quite difficult
to fit a smoothed camera path with a reasonable balance
between video stability and image cropping ratio. With the
constraint of Bézier curves and rigid transformations that they
use for consistent smoothing, this method always results in
large cropping ratio for some videos (see Fig. 4(f-g) and the
corresponding videos in comparison.mp4). Besides, by using
rigid transformation as constraints, this method usually incurs
noticeable distortion for videos with zooming motions, which
essentially have nearly uniform changes between adjacent
frames (see Fig. 4(h)). On the contrary, our method gives
up fitting method and chooses motion smoothing and image
warping with shape preservation based on the ‘as-similar-as-
possible’ principle, which is able to process and produce better



IEEE TRANSACTIONS ON CIRCUITS SYSTEM AND VIDEO TECHNOLOGY, VOL. XX, NO. XX, XX 20XX 9

blanknesssimple rotationzooming parallax crowd

(a)

(b)

0%

20%

40%

60%

80%

100%

Ours Subspace

0%

20%

40%

60%

80%

100%

Ours L1-optimization

0%

20%

40%

60%

80%

100%

Ours Spatial-temporal

0%

20%

40%

60%

80%

100%

Ours Bundled paths

0%

20%

40%

60%

80%

100%

Ours AE

0%

20%

40%

60%

80%

100%

Ours Youtube

(c)

i ii iii

iv v vi

Fig. 7. User study. (a) Testing videos with different shaky motions. (b) User interface. (c) Statistics of user study on stabilization results by our approach,
subspace [6], L1-optimization [10], spatial-temporal optimization [7], bundled paths [11], Youtube and AfterEffects.

stabilization effects for shaky videos with zooming motion.
The bundled paths method [11] uses local homographies

to represent camera motion and optimizes bundled paths,
which offers much better stabilization effects over previous
methods (see Fig. 4 and the corresponding videos in com-
parison.mp4). Actually, trajectories and homographies are two
types of motion representation. The use of trajectories in our
approach can enrolls just the positions of mesh vertices as
the sole variables of the global formulation, which can sig-
nificantly reduces the computational complexity. Concretely,
the bundled path method needs to estimate local homogra-
phies between neighboring frames, which results in a linear
system with dimensionality of the number of variables as
8 × (W − 1) × (H − 1) × N , where (W − 1) × (H − 1)
is the number of quads in each frame, N is the number of
frames. Such linear system typically has the non-zero ratio
approximating to 61/((W − 1)×(H − 1)×N), which makes
its computation slow. While dimensionality of our linear
system is 2 × W × H × N and the nonzero ratio is about
13/(W ×H ×N), our approach therefore has much less cost
and a faster computation than bundled paths for producing the
comparable stabilization results.

User study. We also conducted a user study that collect
and analyze feedbacks on viewing the stabilized videos, which
are produced by using the above methods and our approach.
In our study, we have 30 participants coming from diverse
backgrounds and ages. We selected 18 videos from previous

publicly testing videos that have various motion styles as
shown in Fig. 7(a). We designed a side-by-side view interface
for video display (see Fig. 7(b)), where the source shaky video
at the top, and the stabilization results by our approach and
one of the other four methods at the below. The order of
the two stabilized videos are random, and the corresponding
stabilization methods or our approach are also anonymous
to participants. Every participant is asked to select a better
one between the two stabilized videos that they view in the
interface, and we collect their feedbacks on choosing a better
stabilization result. Fig. 7(c:i-iv) shows the statistics on the
users’ preferences. It can be seen that for the videos with
simple motions, our approach achieves competitive evaluation,
while for more complex motions or scenes, e.g., videos with
fast rotation, zooming or large parallax, our approach generally
gains more favors in the comparisons.

C. Comparison with state-of-the-art systems

Currently, YouTube Stabilizer3 and Warp Stabilizer in
Adobe AfterEffects CS6 (AE) 4 are the two most popular
video stabilization systems. As stated in [7], [11], [25], these
two systems usually incur noticeable shearing or skewing
artifacts, and AE Warp Stabilizer sometimes generates severe
cropping in the stabilized frames (see the examples in Fig. 8

3http://www.youtube.com
4http://www.adobe.com/en/products/aftereffects/warp-stabilizer.html
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and the corresponding videos in comparison.mp4). On the
contrary, the stabilization results by our approach gain overall
advantage of balancing visual distortion and cropping. We
also enrolled these two systems in the user study as described
above to obtain more objective evaluation of the effectiveness
of our approach. From the statistics in Fig. 7(c:v-vi), it can
be seen that our approach has an overall superiority over the
other two stabilized systems, i.e., more participants prefer the
stabilization results by our approach, especially for videos with
rotation, zooming and parallax.

Source video Our result Youtube result

Source video Our result AE result

Fig. 8. Comparison of stabilization results by our approach, Youtube and
AfterEffects.

D. Limitation and discussion

Our approach is a new attempt to globally address the
problem of video stabilization by rephrasing it into a com-
pact one-shot formulation, but we must leave several aspects
unexplored as its downside. Firstly, our approach still relies
on robust trajectories detection, thus possibly cracks itself in
case feature tracking fails. A potential solution to this problem
is to adopt local parametric similar transformations between
adjacent frames like [11]. Secondly, our approach uses local
similar transformations without guarantee on collinearity in
image warping. Hence, our approach might generate severe ar-
tifacts for videos with apparent line structure (see Fig. 9). This
issue can be resolved by adding line-preserving constraints
like the one used in [22] in our formulation. Thirdly, there are
cases that our approach cannot correctly handle videos with
severe rolling shutter effects, because the spatial configuration
in each frame has to be preserved to realize consistent motion
compensation. Nevertheless, we can borrow the technique of
calibration-free rolling shutter removal [25] on the stabilized
videos to suppress the remaining skew as a post-processing.
Additionally, the computational cost of our approach is directly
related to the setting of mesh quad size. It takes about 9 times
effort by using the half-size quads. Actually, 80 × 80 mesh
quad is sufficient to produce the desirable stabilization results
for 720p videos, and the use of denser mesh has little influence
on the visual quality in our experiments (see the example of
Video#2 in the accompanying demo supplement.avi).

VI. CONCLUSION

We have presented a novel formulation for video stabiliza-
tion in a global optimization manner. The core is to encode
motion compensation and image warping with positions of

Fig. 9. Limitation. Our approach might generate severe distortion in the case
of apparent line structure in the video.

mesh vertices as the common embodiment, thus resulting in a
fast one-shot solution on image warps toward stabilization.
Besides, our approach can significantly reduce geometric
distortion caused by image warping due to use of similarity-
invariant representation for spatially and temporally consistent
smoothing on trajectories. Experiments illustrate the potential
of our approach in terms of flexibility and efficiency, to
produce compelling results over the state-of-the-art methods.

There are multiple areas of future work. Although our
approach can generate pleasing stabilization by using local
similar transformations to approximate inter-frame motion,
it still incurs distortion for videos with quite large depth
variations. So we plan to incorporate homographies in our
approach to adaptively set local transformations for quads.
Such hybrid image warps are also rewarding to deal with
rolling shutter effect caused by fast camera motion. Besides,
GPU acceleration is necessary, especially for solving the
sparse linear system to enable a real-time stabilization.
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